
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Jens Kehne | Marius Hillenbrand
Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
3 – TCBs and Address Space Layout

Lecture Summer Term 2017

Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 10.05.2017

Recap: Thread Switch A  B

Thread A is running in user mode

Thread A experiences its end of time slice or is
preempted by a (device) interrupt

We enter kernel mode

The microkernel saves the status of
thread A on A’s TCB

The microkernel loads the status of
thread B from B’s TCB

We leave kernel mode

Thread B is running in user mode

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

3 10.05.2017

Recap: Thread Switch

Thread state must be saved/restored on thread switch

We need a Thread Control Block (TCB) per thread

TCBs must be kernel objects

TCBs implement threads

We often need to find

Any thread’s TCB using its global ID

The currently executing thread’s TCB
(per processor)

At least partially. We have found
some good reasons to
implement parts of the TCB in
user memory ( IPC).

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

4 10.05.2017

THREAD CONTROL BLOCKS

(TCBS)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

5 10.05.2017

TCB Structure

MyselfGlobal
MyselfLocal
State
Resources
KernelStackPtr
Scheduling

ReadyList
TimesliceLength
RemainingTimeslice
TotalQuantum
Priority
WakeupList

Space
PDirCache
…
Stack[]

Thread ID

Local ID = &UTCB

All threads
ready to execute

Round Robin
Scheduler

Address Space

Optimization
IA-32: %cr3

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

6 10.05.2017

Thread ID

Thread number

To find the TCB

Thread version number

To make thread IDs ɀuniqueɁ in time

Thread No Version

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

7 10.05.2017

%eax

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

Thread No Version

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

8 10.05.2017

%eax

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

movl %eax, %ebx

Thread No Version %ebx

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

9 10.05.2017

%eax

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

Thread No Version %ebx

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

10 10.05.2017

%eax

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

movl thread_table(%eax, 4), %eax

Thread No Version %ebx

TCB pointer

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

11 10.05.2017

%eax Off_TCB_Myself()

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

movl thread_table(%eax, 4), %eax

cmpl Off_TCB_Myself(%eax), %ebx

jnz invalid_thread_id

Thread No Version %ebx

TCB pointer Thread No Version

If different, Thread
ID is outdated

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

12 10.05.2017

%eax

Thread ID  TCB

Direct Address

Ver2

User

Kernel

TCB area

Thread No

movl thread_id, %eax

Ver1 Ver2 Thread No Ver1

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

13 10.05.2017

%eax

Thread ID  TCB

Direct Address

Ver2

User

Kernel

TCB area

Thread No

movl thread_id, %eax

movl %eax, %ebx

Ver1

Ver2 Thread No Ver1 %ebx

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

14 10.05.2017

%eax

Thread ID  TCB

Direct Address

Ver2

User

Kernel

TCB area

Thread No

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

Ver1

Ver2 Thread No Ver1 %ebx

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

15 10.05.2017

%eax

Thread ID  TCB

Direct Address

Ver2

User

Kernel

TCB area

offset

Thread No

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

addl offset, %eax

Ver1

Ver2 Thread No Ver1 %ebx

TCB pointer

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

16 10.05.2017

%eax Off_TCB_Myself()

Thread ID  TCB

Direct Address

Ver2

User

Kernel

TCB area

offset

Thread No

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

addl offset, %eax

cmpl Off_TCB_Myself(%eax), %ebx

jnz invalid_thread_id

Ver1

Ver2 Thread No Ver1 %ebx

TCB pointer Ver2 Thread No Ver1

If different, Thread
ID is outdated

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

17 10.05.2017

Thread ID  TCB

Direct Address

Version
User

Kernel

TCB area





Thread No

movl thread_id, %eax

movl %eax, %ebx

%eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

18 10.05.2017

Thread ID  TCB

Direct Address

Version
User

Kernel

TCB area

Mask out lower bits



Thread No

movl thread_id, %eax

movl %eax, %ebx

andl mask_version, %eax

%eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

19 10.05.2017

Thread ID  TCB

Direct Address

Version
User

Kernel

TCB area

Mask out lower bits
Bitshift


Thread No

movl thread_id, %eax

movl %eax, %ebx

andl mask_version, %eax

shrl threadno_shift, %eax

%eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

20 10.05.2017

Thread ID  TCB

Direct Address

Version
User

Kernel

TCB area

offset Mask out lower bits
Bitshift
Add offset

Thread No TCB pointer

movl thread_id, %eax

movl %eax, %ebx

andl mask_version, %eax

shrl threadno_shift, %eax

addl offset, %eax

cmpl Off_TCB_Myself(%eax), %ebx

jnz invalid_thread_id

%eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

21 10.05.2017

Thread ID Translation

Via Table
Table access per TCB

Many TCBs per TLB entry
(TCBs on superpages)

TLB entry for table (?)

Via Computation
No table access

Few TCBs per TLB entry
(sparsely populated area)

 TCB pointer array

requires 1 MB virtual
memory for 256k
potential threads

 Virtual TCB array
requires ≥ 256 MB
virtual memory for
256k potential TCBs

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

22 10.05.2017

Thread ID Translation

Via Table
Table access per TCB

Many TCBs per TLB entry
(TCBs on superpages)

TLB entry for table (?)

Via Computation
No table access

Few TCBs per TLB entry
(sparsely populated area)

 TCB pointer array

requires 1 MB virtual
memory for 256k
potential threads

 Virtual TCB array
requires ≥ 256 MB
virtual memory for
256k potential TCBs

Examples:
4 kB pages, 4 kB TCBs

 1 TCB per TLB entry

16 kB pages, 2 kB TCBs
 8 TCBs per TLB entry

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

23 10.05.2017

0-Mapping Trick

Direct Addressing

 Virtual TCB array
requires ≥ 256 MB
virtual memory for
256k potential TCBs

 Allocate physical memory for
TCBs on demand

 Dependent on the max.
number of allocated TCBs

 Map all remaining TCBs to a
0-filled read-only page

 Any access to unused
threads will result in
“invalid thread ID” (0)
 Avoids additional check

n m r q p s

Physical Memory

TCB Array (virtual memory)

0

Frames containing TCBs.

cmpl Off_TCB_Myself(%eax), %ebx
jnz invalid_thread_id

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

24 10.05.2017

0-Mapping Trick

Indirect Addressing

 Allocate physical parts of table on
demand
 Dependent on the max.

number of allocated TCBs

 Map unused parts to a
0-filled read-only (r/o) page

 Any access to unused threads
will result in a NULL pointer
 Requires extra check à la

cmpl %eax, $0
jnz invalid_thread_id

 Or: Map unused parts to a r/o
page filled with pointers to a 0-
filled r/o page
 Any access to unused threads

will result in an “invalid thread
ID” (0)
 Avoids additional check

 TCB pointer array

requires 1 MB virtual
memory for 256k
potential threads

n m r q p s

Physical Memory

TCB Pointer Array (virtual memory)

0

cmpl Off_TCB_Myself(%eax),
%ebx
jnz invalid_thread_id

Frames containing pointers
to/virtual addresses of TCBs.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

25 10.05.2017

Physical TCB array (seL4)

 Problem: Virtual TCB lookups cause TLB
misses
 Virtual TCB lookup is on IPC path!

 Solution: Use physical memory instead

+ No TLB misses
+ Significantly faster overall (Nourai 2005)
+ Easy to verify

– Requires ≥ 256 MB of physical memory!
– MMU may not permit physical addressing

 Can still emulate physical memory
using huge pages + pinning

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

n m r q p s

TCB Array (physical memory)

0 0 0 0 0 0 0 0 0 0

Operating Systems Group

Department of Computer Science

26 10.05.2017

BASIC ADDRESS-SPACE

LAYOUT

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

27 10.05.2017

Address-Space Layout
32 bit, Virtual TCB Array

User regions

Shared system
regions

Per-space system
regions

 Other kernel tables

 Physical memory

 Kernel code

 TCBs

phys mem

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

28 10.05.2017

Shared Region Synchronization

phys mem

We have

Regions shared among all address spaces

Separate page table per address space

Updates occur in dynamic region

May lead to inconsistencies

We need

Some form of synchronization within
dynamic region

Make sure valid virtual memory mappings
are synchronized

 Static
region

Dynamic
region

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

29 10.05.2017

if (master entry valid)

TCB Area Synchronization
Basic Algorithm

Dedicate one table as master

Synchronize with master table on page
faults

Page fault algorithm:

Static
region

Dynamic
region

Master Table

if (master entry valid) {
 copy entry from master
}

if (master entry valid) {
 copy entry from master
} else

if (master entry valid) {
 copy entry from master
} else {
 create new entry in master
 copy entry from master
}

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

30 10.05.2017

TCB Area Synchronization
Algorithm with 0-Mappings

Use 0-mappings for invalid TCBs

Thread creation requires TCB
modification

Create 0-mappings on read faults

Create TCB mappings on write faults

Static
region

Dynamic
region

Master Table

if (master entry not valid) {
 create new entry in master
}
copy entry from master

if (master entry not valid) {
 if (read fault) {
 create 0-mapping in master
 } else {
 create TCB entry in master
 }
}
copy entry from master

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

31 10.05.2017

TCB Area Synchronization
Modifying Mappings

Removing or modifying mappings can
not be handled lazily

Must be handled brute force

Avoid removing mappings

(i.e., do not remove TCB mappings)

Potential problem

Create 0-Mappings (invalid TCBs)

Create a real TCB mapping

0-Mappings must now be updated

 Static
region

Dynamic
region

Master Table 0

0

0

0

0

Operation
incorrectly

fails

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

32 10.05.2017

TCB Area Synchronization
Modifying Mappings

Page tables have multiple levels

IA-32: page directories and page tables

We only synchronize top level (page directory)

Modifications in lower levels
visible in all spaces

Conclusion:

Synchronization of pdirs solves
the modification problem

ptab

ptab

ptab

pdir

pdir

0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

33 10.05.2017

Processor-Specific Memory

Certain objects and
variables should be
processor local

Ready queues, CPU ID, etc.

Prevents cache conflicts

Will require frequent access

Solution: per-CPU memory
regions

Same virtual address

Different backing store

Avoids indirection table
(i.e., no extra memory access)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

34 10.05.2017

Processor-Specific Memory

One page table per CPU

Most content identical

Requires synchronization

(eagerly or lazily)

Synchronization at page
directory level

Small memory region is
CPU specific

Physical Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

35 10.05.2017

Processor-Specific Memory

Per-CPU region

Avoids indirection

Dynamically adjusts to
CPUs

Scales to large # CPUs

No access to other
CPU’s data

Array of per-CPU items

Linux approach

Compiled with max.
number

Wastes memory for
unused entries

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

36 10.05.2017

Physical Memory Window

Used by the kernel for

Page tables

Kernel memory

Kernel debugger

Only used when the kernel
accesses physical addresses

Limit valid physical range to
remap size (256 MB)

Or …

 Map and unmap
 Copy IPC

 Address spaces
 UTCBs

 KDB output
 Mem Dump

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

37 10.05.2017

Physical-to-Virtual Pagetable

Remap kernel-used pages

Obtain virtual from physical address

Walk physical-to-virtual ptab in software

Access physical memory via virtual address

Costs?

Cache, TLB, runtime

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

38 10.05.2017

Kernel Debugger (not performance critical)

Might want/need to access memory
(maybe in different address space)

Walk page table in software

Remap on demand (4 MB)

Optimization: check if already mapped

phys mem

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

39 10.05.2017

Summary

TCBs

Implement threads

Need to find them by Thread ID

TCB area

Virtual/physical array

0-mapping trick

AS Layout

Shared region synchronization

Per-processor memory

Physical memory window

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

